• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    科研成果    学术论文
学术论文

Novel Cr(III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(III) in aqueous solution

来源:

来源:   |  发布时间:2016-04-19   |  【 大  中  小 】

论文题目:

Novel Cr(III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(III) in aqueous solution

英文论文题目:

Novel Cr(III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(III) in aqueous solution

第一作者:

李怀

英文第一作者:

Li, H.

联系作者:

李怀

英文联系作者:

Li, H.

发表年度:

2015

卷:

56

期:

1

页码:

204-215

摘要:

Novel magnetic graphene oxide-based Cr(III) ion-imprinted materials were prepared through surface ionic imprinting technology. The resulting composites were verified by X-ray diffraction, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, and thermogravimetric analysis techniques. Batch adsorption studies were performed to evaluate adsorption kinetics, isotherms, selectivity, and reusability. The intra-particular diffusion model was best described by adsorption kinetics, whereas adsorption equilibrium data were better described by Langmuir equation. Langmuir dimensionless separation factor calculation results indicated highly favorable adsorption with increased adsorption efficiency at higher Cr(III) ion concentrations. The relative selectivity coefficients of Fe3O4/SiO2-GO-IIP for Cr(III)/Na(I), Cr(III)/Mg(II), and Cr(III)/Ca(II) were 2.68, 2.10, and 2.83 times greater than those of Fe3O4/SiO2-GO-NIP, respectively. In addition, reusability without obvious deterioration in performance was demonstrated by the resulting composites in at least five repeated cycles. The experimental results showed that Fe3O4/SiO2-GO-IIP had high affinity and excellent selectivity for Cr(III) ion, as well as reusability and faster magnetic separation under an external magnetic field.

英文摘要:

Novel magnetic graphene oxide-based Cr(III) ion-imprinted materials were prepared through surface ionic imprinting technology. The resulting composites were verified by X-ray diffraction, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, and thermogravimetric analysis techniques. Batch adsorption studies were performed to evaluate adsorption kinetics, isotherms, selectivity, and reusability. The intra-particular diffusion model was best described by adsorption kinetics, whereas adsorption equilibrium data were better described by Langmuir equation. Langmuir dimensionless separation factor calculation results indicated highly favorable adsorption with increased adsorption efficiency at higher Cr(III) ion concentrations. The relative selectivity coefficients of Fe3O4/SiO2-GO-IIP for Cr(III)/Na(I), Cr(III)/Mg(II), and Cr(III)/Ca(II) were 2.68, 2.10, and 2.83 times greater than those of Fe3O4/SiO2-GO-NIP, respectively. In addition, reusability without obvious deterioration in performance was demonstrated by the resulting composites in at least five repeated cycles. The experimental results showed that Fe3O4/SiO2-GO-IIP had high affinity and excellent selectivity for Cr(III) ion, as well as reusability and faster magnetic separation under an external magnetic field.

刊物名称:

Desalination and Water Treatment

英文刊物名称:

Desalination and Water Treatment

英文参与作者:

Li, J. Z.; Cheng, L.


附件下载:

版权所有 © 中国科学院湿地生态与环境重点实验室 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542361   Email:caoruixue@iga.ac.cn