论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文题目: Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition
英文论文题目: Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition
第一作者: Liu, Zhuxiu
英文第一作者: Liu, Zhuxiu
联系作者: 刘俊杰
英文联系作者: J. J. Liu
发表年度: 2020
卷: 197
摘要:

Continuous cropping of soybean causes soil degradation and soybean yield decline, but these effects could be alleviated by crop rotation or the use of long-term continuously cropped soybean systems. However, the mechanism by which biotic and abiotic factors are affected by different cropping systems remain unclear. In this study, we comparatively investigated the bacterial and fungal abundance, diversity and community compositions in the bulk and rhizospheric soils of soybean continuously cropped in the short-term for 3 and 5 years (CC3 and CC5) and in the long-term for 13 years (CC13), as well as cropping rotation with maize in alternately for 5 years (CR5) using qPCR and high-throughput sequencing methods. The results showed that soil pH, and available nutrients such as N, P and K were significantly higher in the bulk soils of CC13 and CR in contrast to CC3 and CC5. The fungi/bacteria ratio was significantly higher in the rhizospheric soils of CC3 and CC5 than that in CR5 and CC13, indicating that short-term continuously cropped soybean decreases bacterial abundance but increases fungal abundance. The bacterial and fungal community structures were significantly altered by different cropping systems, and the soil pH and C/N were the primary soil factors in shifting the bacterial and fungal community structures in the bulk soils, respectively. Bacterial and fungal co-occurrence patterns were remarkably affected by cropping systems, which showed that CC13 and CR5 harbor co-occurrence networks that are more complex than CC3 and CC5. Moreover, CC13 and CR5 increased the relative abundances of potentially beneficial bacteria Bradyrhizobium sp. and Gemmatimonas sp. and fungi Mortierella sp. and Paecilomyces sp. but decreased the relative abundances of the pathogenic fungi Fusarium sp. in contrast to CC3 and CC5, which indicated that long-term continuous cropping of soybean might have generated a possibility of the development of disease-suppressive soils.

英文摘要:

Continuous cropping of soybean causes soil degradation and soybean yield decline, but these effects could be alleviated by crop rotation or the use of long-term continuously cropped soybean systems. However, the mechanism by which biotic and abiotic factors are affected by different cropping systems remain unclear. In this study, we comparatively investigated the bacterial and fungal abundance, diversity and community compositions in the bulk and rhizospheric soils of soybean continuously cropped in the short-term for 3 and 5 years (CC3 and CC5) and in the long-term for 13 years (CC13), as well as cropping rotation with maize in alternately for 5 years (CR5) using qPCR and high-throughput sequencing methods. The results showed that soil pH, and available nutrients such as N, P and K were significantly higher in the bulk soils of CC13 and CR in contrast to CC3 and CC5. The fungi/bacteria ratio was significantly higher in the rhizospheric soils of CC3 and CC5 than that in CR5 and CC13, indicating that short-term continuously cropped soybean decreases bacterial abundance but increases fungal abundance. The bacterial and fungal community structures were significantly altered by different cropping systems, and the soil pH and C/N were the primary soil factors in shifting the bacterial and fungal community structures in the bulk soils, respectively. Bacterial and fungal co-occurrence patterns were remarkably affected by cropping systems, which showed that CC13 and CR5 harbor co-occurrence networks that are more complex than CC3 and CC5. Moreover, CC13 and CR5 increased the relative abundances of potentially beneficial bacteria Bradyrhizobium sp. and Gemmatimonas sp. and fungi Mortierella sp. and Paecilomyces sp. but decreased the relative abundances of the pathogenic fungi Fusarium sp. in contrast to CC3 and CC5, which indicated that long-term continuous cropping of soybean might have generated a possibility of the development of disease-suppressive soils.

刊物名称: Soil & Tillage Research
英文刊物名称: Soil & Tillage Research
参与作者: Z. X. Liu, J. J. Liu, Z. H. Yu, Q. Yao, Y. S. Li, A. Z. Liang, W. Zhang, G. Mi, J. Jin, X. B. Liu and G. H. Wang
英文参与作者: Z. X. Liu, J. J. Liu, Z. H. Yu, Q. Yao, Y. S. Li, A. Z. Liang, W. Zhang, G. Mi, J. Jin, X. B. Liu and G. H. Wang
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1