论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Multi-Sensor Prediction of Stand Volume by a Hybrid Model of Support Vector Machine for Regression Kriging
英文论文题目: Multi-Sensor Prediction of Stand Volume by a Hybrid Model of Support Vector Machine for Regression Kriging
第一作者: Chen, Lin
英文第一作者: Chen, Lin
联系作者: 任春颖
英文联系作者: C. Y. Ren
外单位作者单位:
英文外单位作者单位:
发表年度: 2020
卷: 11
期: 3
页码:
摘要:

Quantifying stand volume through open-access satellite remote sensing data supports proper management of forest stand. Because of limitations on single sensor and support vector machine for regression (SVR) as well as benefits from hybrid models, this study innovatively builds a hybrid model as support vector machine for regression kriging (SVRK) to map stand volume of the Changbai Mountains mixed forests covering 171,450 ha area based on a small training dataset (n = 928). This SVRK model integrated SVR and its residuals interpolated by ordinary kriging. To determine the importance of multi-sensor predictors from ALOS and Sentinel series, the increase in root mean square error (RMSE) of SVR was calculated by removing the variable after the standardization. The SVRK model achieved accuracy with mean error, RMSE and correlation coefficient in -2.67%, 25.30% and 0.76, respectively, based on an independent dataset (n = 464). The SVRK improved the accuracy of 9% than SVR based on RMSE values. Topographic indices from L band InSAR, backscatters of L band SAR, and texture features of VV channel from C band SAR, as well as vegetation indices of the optical sensor were contributive to explain spatial variations of stand volume. This study concluded that SVRK was a promising approach for mapping stand volume in the heterogeneous temperate forests with limited samples.

英文摘要:

Quantifying stand volume through open-access satellite remote sensing data supports proper management of forest stand. Because of limitations on single sensor and support vector machine for regression (SVR) as well as benefits from hybrid models, this study innovatively builds a hybrid model as support vector machine for regression kriging (SVRK) to map stand volume of the Changbai Mountains mixed forests covering 171,450 ha area based on a small training dataset (n = 928). This SVRK model integrated SVR and its residuals interpolated by ordinary kriging. To determine the importance of multi-sensor predictors from ALOS and Sentinel series, the increase in root mean square error (RMSE) of SVR was calculated by removing the variable after the standardization. The SVRK model achieved accuracy with mean error, RMSE and correlation coefficient in -2.67%, 25.30% and 0.76, respectively, based on an independent dataset (n = 464). The SVRK improved the accuracy of 9% than SVR based on RMSE values. Topographic indices from L band InSAR, backscatters of L band SAR, and texture features of VV channel from C band SAR, as well as vegetation indices of the optical sensor were contributive to explain spatial variations of stand volume. This study concluded that SVRK was a promising approach for mapping stand volume in the heterogeneous temperate forests with limited samples.

刊物名称: Forests
英文刊物名称: Forests
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: L. Chen, C. Y. Ren, B. Zhang and Z. M. Wang
英文参与作者: L. Chen, C. Y. Ren, B. Zhang and Z. M. Wang
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1