论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Biochar reduces nitrous oxide but increases methane emissions in batch wetland mesocosms
英文论文题目: Biochar reduces nitrous oxide but increases methane emissions in batch wetland mesocosms
第一作者: 陈欣
英文第一作者: Chen, Xin
联系作者: 祝惠
英文联系作者: Zhu, Hui
外单位作者单位:
英文外单位作者单位:
发表年度: 2020
卷: 392
期:
页码:
摘要:

Biochar was added into constructed wetlands (CWs) as an amendment to the main substrate (i.e., coarse gravel) for improving the removal efficiency of pollutants and mitigating greenhouse gas (GHG) emissions. Four types of mesocosm-scale CWs, i.e., unamended subsurface batch CWs (SSBCWs) and surface batch CWs (SBCWs), and biochar-amended SSBCWs and SBCWs, were established in this study. The SSBCWs outperformed SBCWs in both removing pollutants (particularly COD, NO3--N and TN) and reducing the global warming potential (GWP), irrespective of adding biochar or not. The amendment of biochar improved the efficacy of CWs for removing pollutants and mitigating GHG emissions in both configurations of CWs. The highest removal percentages of COD (89.6%), NO3- -N (89.2%) and TN (92.5%) were obtained in biochar-amended SSBCWs, followed by unamended SSBCWs, biochar-amended SBCWs, and unamended SBCWs. The lowest GWP (5.252 mg/m(2)/h) was simultaneously obtained in biochar-amended SSBCWs, and the addition of biochar reduced GWP by 57.3% and 3.0% for SSBCWs and SBCWs, respectively. The abatement of GHG by biochar addition was mainly reflected in reduction of N2O fluxes, while the CH4 fluxes were promoted and the CO2 fluxes were not affected. The quantitative PCR results indicate that the reduced N2O fluxes in biochar-amended CWs were driven by the enhanced transcription of the nosZ gene and the ratio of nosZ/(nirS + nirK). This study demonstrates that biochar-amended SSBCWs can be an ideal alternative for design and application of CWs for removing pollutants and abating GHG emissions in the future.

英文摘要:

Biochar was added into constructed wetlands (CWs) as an amendment to the main substrate (i.e., coarse gravel) for improving the removal efficiency of pollutants and mitigating greenhouse gas (GHG) emissions. Four types of mesocosm-scale CWs, i.e., unamended subsurface batch CWs (SSBCWs) and surface batch CWs (SBCWs), and biochar-amended SSBCWs and SBCWs, were established in this study. The SSBCWs outperformed SBCWs in both removing pollutants (particularly COD, NO3--N and TN) and reducing the global warming potential (GWP), irrespective of adding biochar or not. The amendment of biochar improved the efficacy of CWs for removing pollutants and mitigating GHG emissions in both configurations of CWs. The highest removal percentages of COD (89.6%), NO3- -N (89.2%) and TN (92.5%) were obtained in biochar-amended SSBCWs, followed by unamended SSBCWs, biochar-amended SBCWs, and unamended SBCWs. The lowest GWP (5.252 mg/m(2)/h) was simultaneously obtained in biochar-amended SSBCWs, and the addition of biochar reduced GWP by 57.3% and 3.0% for SSBCWs and SBCWs, respectively. The abatement of GHG by biochar addition was mainly reflected in reduction of N2O fluxes, while the CH4 fluxes were promoted and the CO2 fluxes were not affected. The quantitative PCR results indicate that the reduced N2O fluxes in biochar-amended CWs were driven by the enhanced transcription of the nosZ gene and the ratio of nosZ/(nirS + nirK). This study demonstrates that biochar-amended SSBCWs can be an ideal alternative for design and application of CWs for removing pollutants and abating GHG emissions in the future.

刊物名称: CHEMICAL ENGINEERING JOURNAL
英文刊物名称: CHEMICAL ENGINEERING JOURNAL
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: Banuelos, Gary;Shutes, Brian;Yan, Baixing;Cheng, Rui
英文参与作者: Banuelos, Gary;Shutes, Brian;Yan, Baixing;Cheng, Rui
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1