论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文题目: Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite
英文论文题目: Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite
第一作者: 崔虎
英文第一作者: cuihu
联系作者: 王莉霞
英文联系作者: wanglixia
发表年度: 2021
卷: 406
页码: 124313-124313
摘要:

Available information about the passivation effect on heavy metals (HMs) through adsorption and humification during zeolite-amended composting remains limited. Thus, this study explored the dynamic changes in HM-fractions (Zn, Cu, Cd, Cr and Pb) during aerobic composting added with different grain-size zeolite (Fine zeolite, <0.1mm, ZF; Coarse zeolite: 3-5mm, ZC). Compared to the control (without zeolite, CK) and ZF treatments, ZC treatment got the highest temperature in the thermophilic phase, and significantly reduced the bioavailability factor (BF) of HMs, especially for Cu (45.13%), Cd (16.11%) and Pb (25.49%). Redundancy analysis (RDA) and structural equation models (SEMs) indicated that zeolite accelerated the passivation effect on Cd and Pb through regulating the electrical conductivity (EC) as a result of surface adsorption, and on Cu by influencing total carbon (TC) under the function of humification. These results increase our understanding of the passivation mechanisms of HMs during aerobic composting.

英文摘要:

Available information about the passivation effect on heavy metals (HMs) through adsorption and humification during zeolite-amended composting remains limited. Thus, this study explored the dynamic changes in HM-fractions (Zn, Cu, Cd, Cr and Pb) during aerobic composting added with different grain-size zeolite (Fine zeolite, <0.1mm, ZF; Coarse zeolite: 3-5mm, ZC). Compared to the control (without zeolite, CK) and ZF treatments, ZC treatment got the highest temperature in the thermophilic phase, and significantly reduced the bioavailability factor (BF) of HMs, especially for Cu (45.13%), Cd (16.11%) and Pb (25.49%). Redundancy analysis (RDA) and structural equation models (SEMs) indicated that zeolite accelerated the passivation effect on Cd and Pb through regulating the electrical conductivity (EC) as a result of surface adsorption, and on Cu by influencing total carbon (TC) under the function of humification. These results increase our understanding of the passivation mechanisms of HMs during aerobic composting.

刊物名称: Journal of hazardous materials
英文刊物名称: Journal of hazardous materials
参与作者: H. Cui, Y. Ou, L. Wang, B. Yan, Y. Li and M. Bao
英文参与作者: H. Cui, Y. Ou, L. Wang, B. Yan, Y. Li and M. Bao
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1