论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Iterative Deep Learning (IDL) for agricultural landscape classification using fine spatial resolution remotely sensed imagery
英文论文题目: Iterative Deep Learning (IDL) for agricultural landscape classification using fine spatial resolution remotely sensed imagery
第一作者: 李华朋
英文第一作者: H. P. Li
联系作者: 李华朋
英文联系作者: H. P. Li
外单位作者单位:
英文外单位作者单位:
发表年度: 2021
卷: 102
期:
页码:
摘要:
英文摘要:

The agricultural landscape can be interpreted at different semantic levels, such as fine low-level crop (LLC) classes (e.g., Wheat, Almond, and Alfalfa) and broad high-level crop (HLC) classes (e.g., Winter crops, Tree crops, and Forage). The LLC and HLC are hierarchically correlated with each other, but such intrinsically hierarchical relationships have been overlooked in previous crop classification studies in remote sensing. In this research, a novel Iterative Deep Learning (IDL) framework was proposed for the classification of complex agricultural landscapes using remotely sensed imagery. The IDL adopts an object-based convolutional neural network (OCNN) as the basic classifier for both the LLC and HLC classifications, which has the advantage of maintaining precise crop parcel boundaries. In IDL, the HLC classification implemented by the OCNN is conditional upon the LLC classification probabilities, whereas the HLC probabilities combined with the original imagery are, in turn, re-used as inputs to the OCNN to enhance the LLC classification. Such an iterative updating procedure forms a Markov process, where both the LLC and HLC classifications are refined and evolve collaboratively. The effectiveness of the IDL was tested on two heterogeneous agricultural fields using fine spatial resolution (FSR) SAR and optical imagery. The experimental results demonstrate that the iterative process of IDL helps to resolve contradictions within the class hierarchies. The new proposed IDL consistently increased the accuracies of both the LLC and HLC classifications with iteration, and achieved the highest accuracies for each at four iterations. The average overall accuracies were 88.4% for LLC and 91.2% for HLC, for both study sites, far greater than the accuracies of the state-of-the-art benchmarks, including the pixel-wise CNN (81.7% and 85.9%), object-based image analysis (OBIA) (84.0% and 85.8%), and OCNN (84.0% and 88.4%). To the best of our knowledge, the proposed model is the first to identify and use the relationship between the class levels in an ontological hierarchy in a remote sensing classification process. It is applied here to increase progressively the accuracy of classification at two levels for a complex agricultural landscape. As such IDL represents an entirely new paradigm for remote sensing image classification. Moreover, the promising results demonstrate the great potential of the proposed IDL with wide application prospect.

刊物名称: International Journal of Applied Earth Observation and Geoinformation
英文刊物名称: International Journal of Applied Earth Observation and Geoinformation
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者:
英文参与作者: H. P. Li, C. Zhang, S. Q. Zhang, X. H. Ding and P. M. Atkinson
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1