第一作者: | 丁雪丽 |
---|---|
英文第一作者: | Ding Xueli |
联系作者: | 张旭东 |
英文联系作者: | Zhang Xudong |
发表年度: | 2011 |
卷: | 43 |
摘要: | Carbon (C) and/or nitrogen (N) in plant residues can be assimilated into microbial biomass during the plant residue decomposition before incorporation into SOM in the form of microbial residues. Yet, microbial transformation of plant residue-N into microbial residues and the effects of inorganic N inputs on this process have not been well documented. Here, we undertook a 38-week incubation with a silt loam soil amended with a (15)N-labeled maize (Zea mays L) residue to determine how the transformation of maize residue-N into soil amino sugars was affected by rates of inorganic N addition. The newly metabolized amino sugars derived from maize residue-N were differentiated and quantified by using an isotope-based gas chromatography-mass spectrometry technique. We found that greater amounts of maize residue-N were transformed into amino sugars with lower inorganic N addition at the early stages of the plant residue degradation. However, the trend was reversed during later stages of decay as greater percentage of maize residue-N (8.6-9.4%) were enriched in amino sugars in the N(med) and N(high) soils, as compared with N(0) and N(low) (7.5-8.2%). This indicated that higher availability of inorganic N could delay the transformation process of plant-N into microbial residues during the mineralization of plant residues. The dynamic transformations of the plant residue-N into individual amino sugars were compound-specific, with very fast incorporation into bacterial MurA(M-new) found during the initial weeks, while the dynamics of maize residue-derived GluN exhibited a delayed response to assimilate plant-N into fungal products. The findings indicated differential contributions of maize residue decomposing microorganisms over time. Moreover, we found no preferential utilization of inorganic N over plant residue-N into amino sugars during the incubation course, but inorganic N inputs altered the rate of plant-N accumulation in microbial-derived organic matters. Our results indicated that higher N availability had a positive impact on the accumulation or stabilization of newly-produced microbial residues in the long term. |
刊物名称: | SOIL BIOLOGY & BIOCHEMISTRY |
参与作者: |