Massively Parallel GPU Design of Automatic Target Generation Process in Hyperspectral Imagery
第一作者: |
李晓洁 |
英文第一作者: |
Li, X. J. |
联系作者: |
Huang, B. |
英文联系作者: |
Huang, B. |
发表年度: |
2015 |
卷: |
8 |
摘要: |
A popular algorithm for hyperspectral image interpretation is the automatic target generation process (ATGP). ATGP creates a set of targets from image data in an unsupervised fashion without prior knowledge. It can be used to search a specific target in unknown scenes and when a target's size is smaller than a single pixel. Its application has been demonstrated in many fields including geology, agriculture, and intelligence. However, the algorithm requires long time to process due to the massive amount of data. To expedite the process, the graphics processing units (GPUs) are an attractive alternative in comparison with traditional CPU architectures. In this paper, we propose a GPU-based massively parallel version of ATGP, which provides real-time performance for the first time in the literature. The HYDICE image data (307 * 307 pixels and 210 spectral bands) are used for benchmark. Our optimization efforts on the GPU-based ATGP algorithm using one NVIDIA Tesla K20 GPU with I/O transfer can achieve a speedup of 362x with respect to its single-threaded CPU counterpart. We also tested the algorithm on Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) WTC dataset (512 * 614 * 224 of 224 bands) and Cuprite dataset (35 * 350 * 188 of 188 bands), the speedup was 416x and 320x, respectively, when the target number was 15. |
刊物名称: |
Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
参与作者: |
|