Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
第一作者: |
温志丹 |
英文第一作者: |
Wen, Z. D. |
联系作者: |
宋开山 |
英文联系作者: |
Song, K. S. |
发表年度: |
2016 |
卷: |
20 |
摘要: |
Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances were the likely causes of the diversity of water quality parameters. CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E-250:365), specific ultraviolet (UV) absorbance (SUVA(254)), and the spectral slope ratio (S-r) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC concentration and water quality factors may help contribute to regional estimates of carbon sources and fate for catchment carbon budget assessments. |
刊物名称: |
Hydrology and Earth System Sciences |
参与作者: |
|